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Microstrip Circuit Applications of High-QO
Open Microwave Resonators

KARL D. STEPHAN, MEMBER, TEEE, SONG-LIN YOUNG, anD SAI-CHU WONG

Abstract —The problem of achieving a high circuit Q in hybrid and
monolithic microwave integrated circuits becomes acute in the millimeter-
wave range. An open microwave resonator can be formed above a planar
microstrip substrate by suspending a spherical reflector above it. We
develop a theory to account for the coupling between an open resonator
mode and a microstrip line. The open resonator is shown to have useful
circuit properties similar to a dielectric resonator, but with the potential of
efficient operation well into the millimeter wave range. Experimental
confirmation of the theory is demonstrated by a scale model of a micro-
strip-based single-pole bandpass filter, which shows a loaded Q of 860 and
a minimum loss of 0.8 dB+0.4 dB at 10 GHz.

I. INTRODUCTION

YBRID AND MONOLITHIC microwave integrated

circuits (MIC’s) can now perform nearly all micro-
wave circuit functions that were formerly realized with
classical waveguide or coaxial designs. However, applica-
tions requiring a circuit element Q greater than about 300
have resisted efforts at integration because of the intrinsic
limitations of planar transmission-line media [1]. Although
the use of dielectric resonators can alleviate this problem,
at millimeter wavelengths these devices become very small
and difficult to mount repeatably. Thus, narrow per-
centage bandwidth filters, high-power combiners, and other
components that are intolerant of circuit losses have not
been possible up to now in MIC design. Even conventional
waveguide—cavity resonators show degraded performance
above 30 GHz, leaving the millimeter wave circuit designer
with very few options for achieving high Q circuit func-
tions.

By utilizing the free space above a microstrip circuit for
energy storage, we have found that circuit Q’s above the
generally accepted limits for microstrip elements can be
achieved in a quasiplanar configuration. We form an open
resonator by suspending a spherical reflector above a
microstrip line. Such an open cavity supports fewer modes
than a conventional closed cavity of similar dimensions.
(In a practical circuit enclosure the resonator periphery
can be lined with absorbing material.) The modes sus-
tained within the resonator typically have unloaded Q
values on the order of 10° for reasonable cavity dimen-
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sions. When a microstrip line is coupled to such an open
resonator mode, the energy stored in the resonator volume
becomes accessible to the microstrip circuit, resulting in
loaded Q’s of several hundred to several thousand. In this
paper, we develop a theory which leads to simple lumped
equivalent circuits for the coupling mechanisms between
the open resonator and microstrip. Experiments are pre-
sented and compared with the predictions of the theory.
Finally, some applications of this technique are discussed,
including filters, oscillators, and power combiners.

II. THEORY
A. Empty Resonator

Since the empty open resonator consisting of one flat
and one concave spherical mirror is the same type of
modified Fabry—Perot structure used in many lasers, it has
been studied extensively by numerous authors [2], [3].
Mink [4] analyzed the fields inside such a quasi-optical
resonator in connection with power combining of solid
state millimeter wave sources. At millimeter wavelengths,
the geometric—optics assumption that the wavelength is
negligibly small compared to the cavity dimensions is no.
longer valid and diffraction effects become increasingly
significant. Cullen [5] has summarized the best current
theoretical models for fields inside a millimeter wave open
resonator of practical dimensions. For the purposes of our
analysis a scalar-field approach gives satisfactory preci-
sion, and it is this approach as presented by Cullen that we
will now review.

Fig. 1 illustrates an open resonator formed when a flat
reflector at z =10 faces a spherical concave reflector of
radius R, at z = D. The solution of interest results from
equating the scalar-field variable to the y-directed mag-
netic field, assuming that the radial-field dependence is
much slower than the variation along the resonator z axis,
and solving the resulting scalar Helmholtz equation. The
result is in terms of the y-directed magnetic field:

W,
H, = Hy—

> w(z)

cos[kz —~&(z)+ kp?/2R(2)]

exp [~ p/w(2)]. (1)

In addition to the free-space wavenumber k =27/ and
radial distance from the axis p=yx>+ y?, the special
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Fig. 1. Empty open-cavity microwave resonator.
functions

®(z) =arctan(z/z,)

R(z)=z(1+23/2?)

2)
(3)

wz(z)=%z~9(1+zz/zg) (4)
are defined in terms of a characteristic length z, which will
shortly be determined from the boundary conditions. The
field described by (1) is a standing wave, approximately
plane near the flat reflector, whose amplitude shows a
Gaussian dependence on radius p. Thus it is termed a
Gaussian beam. At z =0 the radius, measured from the
resonator axis, at which the amplitude falls to 1/¢ of its
on-axis value is termed the beam radius or scale radius wy,
which is related to the characteristic length z, by

(5)

Wy = —.
T
The electric field coexisting with the magnetic field of (1)
is

E =~ jHO{’:—Z] w—‘zjoz—)sin [kz — ®(z)+ kp*/2R(z)]

o/wi(z)] (6)

where p, and €, are the permeability and permittivity of
vacuum, respectively.

To determine z, we require tangential £ to vanish on
the surface of the spherical reflector, which intersects the z
axis at z = D. Near the z axis E_, = E, and, recognizing
that R(z) is the radius of curvature of the phase front, we
use (3) to find that

'CXp['—

20=\D(R,—D). (7)

The boundary conditions will be satisfied only for certain
values of k =, corresponding to the TEM,, modes of
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Fig. 2. Fields near a flat reflector which supports a dielectric substrate
of thickness 4.

the empty resonator. It can be shown that
(g +1)7 +arctan [\/D/(RO - D) ]
7 Kq = D .
This completes the analysis of the empty resonator.

(8)

B. Resonator with Dielectric Substrate

Suppose that the flat reflector now supports an electri-
cally thin dielectric substrate as shown in Fig. 2. To be
suitable for microstrip service the substrate height 4 must
be no thicker than approximately

1 A

10 /e,
where ¢, is the dielectric constant of the substrate relative
to vacuum and A is the free-space wavelength. This limita-
tion permits considerable simplification of the analysis. At
the surface of this thin dielectric, the fields are essentially
plane waves with a Gaussian dependence on radius. This
assumption allows the replacement of the dielectric slab of

thickness 4 with an electrically equivalent empty space of
thickness ¢, given by

1 tan (kh\/e:)

t = —arctan
k Ve,

In order to keep a similar form for the fields near the
ground plane for the empty resonator case and the reso-
nator with dielectric, we make the substitution z'=
z+(t—h) into (1) and (6) to find the fields within the
dielectric of region 1. bearing in mind that the relative
permittivity of the dielectric is ¢,. Matching boundary
conditions (£, = E, and H, H at z=h) yields ex-
pressions for the flelds E, and H, “in region 2. With the
added condition that the beam radlus w, equals or exceeds
A, it can be shown that the following expressions agree
with the more exact analysis of Cullen [5] to within 2° of
the harmonic function arguments and one percent of the
true beam radius:
Region 1 (0 <z<h):

H,= Hycos (kyz)exp(—

©)

max

(10)

/s ) (11)

0

1/2
E1=—jﬂ Fo sin(k,z)exp(—p*/wg). (12)
X \/Z €
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Fig. 3. Microstrip lines on dielectric substrate inside open resonator.

Region 2 (h<z<D):
wy cos(kyh)
H = H - — kz'— ®(z')+ kp?/2R(z’
= 0O eos (k1R = )T k/2R ()
-exp [ — pz/vwz.(z')] (13)
—jHO Y2y, sin(kyh)
\/Z | w(2) sm(kt)
-sin [ kz’ — (I)(z )+kp2/2R(z ]exp[ p2/w(2)]
(14
where k = k\/: is the wavenumber in the dielectric and
the substrate permeablhty {to is assumed to be that of

vacuum. The expressions for the characteristic length z,
and resonant wavenumber must now be modified to

=(D+1=1)(Ro+ D+1—h) (1)

E,=

P

and

(q+1)7r +arctan[\/(D+t—h)/(R0
K  D+t—h

(16)

Since the substrate is near an electric field minimum, these
corrected values for characteristic length and resonant

waventimber are usually within one percent or less of the
corresponding unprimed empty resonator figures, which
may cOnsequently be used without serious error.

-

C. Resonator with Magnetzc Current Source and
Microstrip Line '

In Fig. 3 we show two m1crostr1p lines on the surface of
the dielectric substrate of subsection B. The microstrip line
in the upper part of the figure extends from x = — o 10
x = + o0 along its axis y = Y. The second microstrip line
‘terminates in an open circuit at (x,— h/2, y;, h) where
an ac voltage v, is maintained at the open end with respect
to the ground plane. Following Derneryd [6], we replace
the 'second microstrip by a magnetic current element of
magnitude M, = v, /h, oriented as shown.

This magnetlc current excites fields in the open cavity
resonator which can be expressed exactly, in principle, as

D—1+h)|
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an infinite sum of the various orthogonal cavity-mode
fields. Since the TEM,, , modes have very high @ values,
only one mode is excited significantly near a given reso-
nant frequency, and the terms in the expansion corre-
sponding to the other modes are comparatively small. An
analysis that approximates the total field by a single term
in the expansion will accurately model the coupling medi-
ated by the mode corresponding to that term near its
resonant frequency, and- this is, the path we will pursue.
Using a single term in the expansion, we obtain this
expression for the cavity’s magnetic field H [7]:

H=ﬁ(w —wo)ﬂfM Hy dr

in which w, is the mode’s complex resonant frequency. The
mode field H must be normalized so that integration over
the cavity volume V yields

,uo«f/ I:io'ﬁo* dr=1.
vV

Imposing this normalization condition leads to a value for
H, in (1) of Hy=(2/w)(wGpy) /2 in which G is a
length related to the inter-reflector distance D by

cos® (k 4h) sin (2kt ) sin (2k 4h)

=——"—|D—-h~— +h+ .
cos? (kt) k k,

(19)

For the equivalent magnetic current of Fig. 3, the integra-

tion of (17) yields a relation between the cavity field H
and the voltage v;:

i ﬁ( je
_ o w? — w?

(17)

(18)

[sHycos (k k) exp (- p?/woz)] v, (20)

in which p2=x2+ y} and s is the microstrip width. In
this expression the value of the magnetic field over the
relatively small magnetic current area has been approxi-
mated as a constant equal to its value at (x5, 3, h).

We next assume that the presence-of the infinite micro-
strip line leaves the magnetic field of (20) undisturbed to

" first order. Since the electrically thin substrate places the

microstrip near the electric-field null at z =0, this assump-
tion is reasonable. Considering the contour 4 in Fig. 3 as
being centered beneath the infinite mlcrostnp, Faraday’s

law gives ,
%E-dﬁ—jwmg A-da.

Since the top and bottom segments-of A lie on conductors,
only the vertical segments along E, contribute to the
left-hand side of (21), which can be expressed in terms of a
differential induced voltage:

8(x) =h[E,(x+dx)- E,(x)] = —SliE"’-dif (22)

(1)

When this term is added to the telegrapher’s equation for
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voltage and current along a transmission line having in-
ductance L and capacitance C per unit length, we obtain
this differential equation for the microstrip line voltage

v(x):

= — w?’L(Cy.

- 23
dx? dx| dx (23)

The induced voltage derivative §(x)/dx can be found by
substituting (20) into (21) and using (22) to find that

8(x)

d_zu d [S(x)}

=0, F(w)exp (= x*/]) (24)

dx
in which the function of frequency F(w) is defined as
F —w*  4sh e sin(k,h)
()= (wz—wé) WWOZGCOS( ah) k4h

exp (= yo/wg ) exp (= p3/wg). (25)
A solution of (23), with the exponential function of x in
(24) substituted for 8(x), can be found by Fourier-trans-
form methods [8]. The inhomogeneous solution induced by
the driving voltage v, is found to be

vy Fwo/m KR
2

o(x) =
{exp {(JoVLC ) (wo,/2) = x/wy )
{1 ert [(JoVIC) (w,/2) = x /o] )
—exp { (JoVLC) (wy,/2) + x /)
A1—erf [(JoVIC)(wo/2) + x /@] }}.  (26)

The product wVLC =k, is simply the propagation con-
stant of the microstrip line, and &k, = kye,, where ¢, is the
effective relative dielectric constant of the microstrip line.
Making this substitution, we find that (26) can be ex-
pressed as the sum of a forward-traveling voltage wave
v*(x) and a reverse-traveling wave v~ (x), so that v(x) =
v¥(x)+ v~ (x) where

F
o (6 = 22 (1t /2 /)
kZ 2
.exp(_ "o )e‘jkex (27)
v (x) = “_Egﬂ;_[l_erf(jkewo/z_ x/wy)]

2,2
keWO

(28)

Suppose the infinite microstrip is now terminated in
marched loads at port 1 (x = x;) and port 2 (x =x,), as
shown in Fig. 4. The voltage v, at port 2 results from the
forward-traveling wave arriving at x,, which is different
from the voltage v (x,) of the infinite line because of the
missing contribution from the omitted part of the line
extending from x = — oo to x = x;. This missing contribu-

-exp ( - ) ek,
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Fig. 4. (a) Infinite microstrip hine reduced to (b) fimte line with matched
terminations at ports 1 (x=1x;) and 2 (x =x,). and (c) equivalent
circuit showing line broken at x = x, and fed by port 0 of two-port.

tion in Fig. 4(b) is simply v™ (x;) times the phase factor
e /ketx>=x) leading to this expression for the net voltage
U,(x,) of the finite line:

0(x) =07 (xy) = v (x;) e VKelm ), (29)

A similar argument gives

0i(x) =07 (x1) — v (x,) e Kelamm),

(30)
When these differences are evaluated the error function
integrations in the complex plane cancel over most of their
extent, leaving

(31)

v F ) ke
Uz(xz) =§(IR+JII)6 ke

and
— v, F

2k

e

vy(x;) = (Ig = jI;) etk (32)
in which the integrals I, and I; are defined in terms of
normalized coordinates u, =k _x,;, u,=k_x, and a nor-

malized beam radius v, = k, w,:

Uy 2 2
I, E/ “cos(u)e /" dy

L5t

(33)

“z 2,2
I,Ef sin(u)e /Y du.

U

(34)

To complete the analysis we must determine the Q
value of the resonant mode which determines the
complex-valued resonant frequency w, in terms of @ and
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w, [7]:

2_ 2
Wy = W

J
1+=].

) (3)
The value of Q, assuming no wall or diffraction losses for
the moment, can be found by taking the ratio of stored
energy U to energy dissipated in the microstrip loads per
cycle at resonance. This is most easily done by letting
H = H,, since our choice of normalization then gives a
numerical value for U of 3. Using the expressions
for v,(x;) and v,(x,) to find total average power P, =
(Jv4)? + |v,|) /2 Z,,, we obtain after some algebra:

Q=z Zy E 2,2 (kdh)z
2 wpoh b €0 sin? (kyh) (IZ+1F)

RV

(36)

Substitution of this Q value into (35) now completes the
expression for F(w) and determines v, and v, in relation
to the driving voltage v,.

D. Resonator Equivalent Circuit

Let us now derive an equivalent circuit for the case
illustrated in Fig. 3. Examination of the form of the
voltages v, and v, in (31) and (32) shows that they are
equal in magnitude and differ in phase by a factor related
to position. This suggests an equivalent circuit of the form
shown in Fig. 4(c), in which both v; and v, arise from a
voltage v, at port 0 of a hypothetical two-port. The new
voltage v, is related to v; and v, by

-

v, = 0 e TRelxe—x) (37)
+ v

=3 0 g rke(xa—x,) (38)

and if we define the location of the equivalent port to be

x,, we find that
+ wn} (39)

where n is an integer chosen such that x; <x,<x,. The
expression for v, that gives the desired forms of v; and v,
1S now

1
= — larct
X X arctan

e

e R

(13+17)°F(w)
k

€

Vo = U3 = gty (40)
in which we have introduced the dimensionless hybrid
parameter £ ,. Since the load viewed from port 0 is simply
2Z,, the problem of simulating a three-port circuit
terminated in Z, at ports 1 and 2 has been reduced to the
problem of simulating a two-port circuit with a load 2Z,
at port 0.

Since by assumption the resonator is lossless, its two-port
admittance matrix is composed of four purely imaginary
elements. By reciprocity, two of these elements are equal
(Yy; =Y5), so there are only three independént variables
to be determined: Yj,, ¥; =Yy, and Y;;. The behavior of
these parameters near resonance can be found by conserv-
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ing complex power. Let # be the complex power entering
port 3. Then if P, is the (real) power dissipated at the load
2Z, on port 0, and W,, and W, denote the average stored
magnetic- and electric-field energies respectively, complex
power is [9]

|U3|2Y1r>:<
- ()

where Y. is the input admittance at port 3 when port 0 is
terminated in 2Z,. Near the resonant frequency w = w,,
the real part G, of Y., will be stationary with respect to
frequency and Y;, can be approximated by

B,
Yin = Gm + .]Aw ——5(0_

P=P,+ j20(W,—W,) =

(42)
where Y, =G, + jB,, and Aw=w—w, At resonance
(Aw = 0), the complex power & becomes purely real and
must equal the power P, dissipated in port 0’s load.
Relating v, to v, via (40) for w = w, gives

_4 Os?cos? (kyh)exp(—20%/we)

~
2
T @, Wy

G,

mn

(43)

The value of dB,, /dw can be found by differentiating
(41) with respect to w and recognizing that W, =W, at
resonance. This gives

4o, 4

-t — (W, ~W,) =
|03|2 8(«)( m e)

m

dw

(44)

The frequency dependence of the stored-energy terms
comes from the mode expansion of the fields, which results
in these expressions for W, and W, in terms of Q, P, w,,
and w,:

j ’PLw
d%r
W, = i 45
"oet—eg] Q ()
. 2
J®@o Pdwr
W,=|—5— B (46)
W= wy
o]
20

At w=w,, W, is stationary and (45) substituted into (44)
gives
JB 20
m=-~gG. (47)

do w,

Now that Y, and 4(; have been found, all that remains is
to devise an equivalent circuit whose Y, and hy; equal
those of the physical system when both are loaded by 2Z,
at port 0. It is a straightforward matter to show that if the
three real quantities G,,, B,,, and |hy]| correspond, then so
must the imaginary values Y, Y,;, and Y,;y. Hence the
circuit devised will be truly equivalent in the neighborhood
of resonance.

Consider the lumped-element equivalent circuit in Fig. 5
which we choose to model the two-port block in Fig. 4(c).
Suppose the series capacitance Cp is much smaller than
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C,. Far from resonance, the admittance at port 3 will
approach jwC;. Since this behavior is shown by the open-
circuit microstrip of Fig. 3, we choose to set C,. equal to
this fringing capacitance. Derneryd [6] gives an approxi-

mate expression for Cp in terms of A, s, €, and line
impedance Z:
0412hjeeopy  €,+0.3  s/h+0.262

: : . (48
Cr Z, €,—0.258 s/h+0.813 (48)

For practical microstrips Cy. is typically less than 0.1 pF.

We will now show how C;,, L, and N can be selected so
as to model the behavior of the open resonator-microstrip
circuit in the neighborhood of resonance. First we require
~ that the input admittance Y,=G,+ jB, is real at the
resonant frequency w,. Let R=2N?2Z, be the resistance
across the tank circuit reflected through the ideal trans-
former. If Y, is real at w=,, then L, and C, must
satisfy

R

At resonance, it can be shown that

( = )2 - [wrzLo(Co +Cy) _1] [1 - wrzLOCO]' (49)

-1

1/2
} =G,. (50)

Re(¥ R | R? 1
=T T oy

Setting Re(Y,) = G, determines R and thus N, since Z,, is
fixed. This insures the equivalence of Ay and G _. The
expression for 9B, /dw is quite complicated, but for Q, =
wLy /R greater than 100, this approximation is correct to
within 0.2 percent:

dB, —2CER*> 4B,

o L, dw (51)

Eq. (51) determines L, which can be used in (49) to find
C, exactly. Thus all three parameters of the equivalent
circuit N, L, and C, have been found in terms of the
open resonator parameters. When the values for G, and
dB,,/dw found from the open resonator are used in (50)
and (51), we obtain these explicit expressions for the
equivalent circuit component values:

11 G v
N={—|—¢+—2_ 52
{220 Gn (0C,) } (52
A4CEIN*Z ko,
L,=——" 53
0 oG, 53)

Co=Cplwr(LyCe— Li/R) ' =1]. (54)

III. EXPERIMENTS
A. Applicability of the Theory

It is optimistic to expect the simplified analytical expres-
sions derived above to model exactly the very complex
microstrip open resonator system. Our theory is incom-
plete in that we have not attempted to solve Maxwell’s
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Fig. 5. Equivalent circuit for two-port block of Fig. 4(c).

equations self-consistently. Instead, we began with a solu-
tion for the more tractable case of a bare dielectric slab in
an open resonator, and assumed these fields were undis-
turbed by the insertion of microstrip lines. Up to now we
have also neglected all mechanisms of energy loss other
than the power coupled out of the resonator by the micro-
strip lines. In the following section we will show how the
equivalent circuit of Fig. 5 may be modified by adding an
empirically derived resistor R, to model diffraction and
ohmic losses. The microstrip lines also perturb the reso-
nant frequency w, away from the value predicted from the
bare-slab analysis, so in the following analyses w, is de-
termined by experiment. With these empirical corrections
we will show that the theory predicts experimental Q
values to within a factor of two or better. More sophisti-
cated analyses will no doubt improve this accuracy, but the
goal of achieving a semiquantitative understanding of the
coupling between microstrip lines and an open resonator
has been achieved.

B. Diffraction and Ohmic Losses

Diffraction losses per se in an empty open resonator
can be very low, as Beyer and Schiebe showed in their
experimental study of open resonators at 9 GHz [10].
However, when any metallic object such as a microstrip
line is placed within the open resonator fields, induced
currents on the object radiate power out of the resonator.
This extrinsic diffraction loss or scattering loss was studied
experimentally by constructing an open resonator along
the lines of Figs. 1 and 2. In all the experiments to be
described, we used a polished, gold-plated, aluminum
spherical reflector whose radius of curvature R =156.2 mm
was equal to its usable diameter. The flat reflector was a
brass plate approximately 15 cm square mounted on a
motor-driven translation stage so that the inter-reflector
distance D could be adjusted with a resolution of 2.5 pm.
The coaxial-loop coupling method of Beyer and Schiebe
[10] was used to measure the unloaded quality factor Qo-

To investigate the scattering effects of microstrip lines
on the O, of an open resonator mode, we first tracked the
Qp of the TEMy,; mode of the empty resonator as a
function of D to establish a baseline. This baseline value is
established by a combination of diffraction losses and
ohmic losses. The latter can be predicted from theory [11]
and for this resonator the Q, calculated from ohmic losses
alone is D/(S,+S,). in which the skin depths for brass
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35000 1 .. @) ------ Theoretical (ohmic loss only)
(o) —=— Exp (empty )
(c) ——+— Expetimental {with microstrip lines)

30 000 1 . -
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Fig. 6. Unloaded @ of TEMgy; mode versus frequency as inter-reflec-

tor distance D is varied. (a) Theoretical maximum @, including ohmic

loss only. (b) Measured Q, of empty resonator. (¢) Measured Q, of
resonator with substrate and microstrip lines.

(S,) and gold (S,) are found using conductivities of 1.57-
107 S/M and 4.1-107 S/M respectively.

In Fig. 6 the experimental values for Q are plotted for

the TEM,; mode as a function of resonant frequency. The
parameter D was varied from 46.5 mm to 84.6 mm to
obtain the frequency range illustrated. Above 10 GHz, the
measured data for the empty resonator follow the shape of
the theoretical ohmic-loss limit, although differing from it
by a constant scale factor probably caused by surface
roughness, which increases the ohmic loss above its theo-
retical value. Below 10 GHz, the experimental empty reso-
nator @, falls rapidly because of diffraction from the edge
of the spherical reflector, where the beam intensity is only
11.6 dB below its on-axis value at 9 GHz.

A dielectric substrate with two microstrip lines having
the dimensions shown in Fig. 7 (4 =14.6 mm) was mounted
on the flat reflector, with due precautions taken to insure
the flatness of the ground plane. The width of the micro-
strips was chosen so that their characteristic impedance
was 50 ohms. The measurements of @, versus distance
were then repeated. Above 11 GHz, the quality factor fell
from about 20,000 to about 13,500 but showed no strong
frequency dependence. This decrease can be attributed to a
combination of dieleciric substrate losses (expected to be
comparatively small in this case) and nonresonant scatter-

ing from the microstrip lines. Near 9.8 GHz the open-ended

lines are a half-wave long electrically, so their resonant
scattering cross-section increases greatly above its nonreso-
nant value. This effect is demonstrated by the sharp drop
in Q, for this case, with a minimum value below measura-
ble limits at about 9.6 GHz. A modified version of this
experiment has been used to measure the scattering cross-
section of symmetrical objects such as wires [12]. When the
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Fig. 7. Dimensions of dielectric substrate and microstrip lines mounted
on flat reflector of open resonator (distance A given in text).

microstrips are terminated in a resistive load, as in the next
section’s experiments, they cease to be resonant lines, and
scattering decreases so that reasonably high Q values are
once again obtainable. ‘ '

C. Open-Resonator-Coupled Microstrip Lines

In these experiments the same configuration of micro-
strip lines as in Fig. 7 was used. Two 0.9 mm O.D. 50 ohm
coaxial cables were brought through the flat reflector to
ports 1 and 4 of the microstrip lines. The cable’s shield was
soldered to the back of the microsirip ground plane and its
center conductor extended through a small hole in the
substrate to join the end of the microstrip line. Since
the coaxial line loss of about 2 dB was not a part of the
intrinsic loss of the system, it has been subtracted from the
raw experimental loss data. Reflections from the imperfect
coaxial-microstrip transitions limited the accuracy of the

- transmission loss measurements to about +0.4 dB.

Three physical configurations of the microstrip lines
were examined. In the first configuration, the spacing A4
was 26.9 mm, which meant that the lines were electrically
short and coupling was mediated primarily by the fringing
electric field at the open-circuited ports 2 and 3. We will
denote this case (a) as electric coupling, although some
voltage was induced by the magnetic field in the short
microstrip sections and both effects were included in the
equivalent circuit model. The second configuration was
obtained from the first by adding symmetrically placéd
short-circuited stubs at ports 1 and 4. This had the effect
of placing shunt inductances (calculated total value L =
0.637 nH) across these ports, which tuned out some of the
capacitive susceptance shown by these electrically short
lines. This second case (b) we term electric coupling with
matching. Finally, the inductive stubs were removed and a
circuit having a distance of 4 =14.6 mm was studied. The
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longer microstrip lines of this third case coupled substan-
tially to both the electric and the magnetic fields, so we
refer to this case (c) as electromagnetic coupling.

Equivalent circuit models for these cases were obtained
by extending the conceptual three-port circuit of Figs. 4(c)
and 5 in a straightforward manner. Empirically determined
values for unloaded resonator Q, due solely to scattering
and ohmic losses were modeled by inserting a resistor of
value Ry= o, L0, into the equivalent circuit of Fig. 5.
The resulting equivalent circuit for all three cases is shown
in Fig. 8. All component values with the exception of C,
and R, were calculated from first principles using the
theory of Section II. The transmission loss in a 50 ohm
system from port 1 to port 4 was then measured for all
three cases. A typical response showed a peak in |S,,| at
the mode’s resonant frequency «, with a maximum value
[S41lmax and a 3 dB radian frequency bandwidth Aw from
which an experimental value for the loaded quality factor
0, = w, /Aw was obtained.

In order to compare the experiments with theory, the
remaining component values C; and R, must be estab-
lished. Taking the frequency at which |S,,| ... occurs to be
the experimental resonant frequency, we used this value of
w, in (54) to find C,. Since no independent measurements
of Q, were made, we chose to adjust R,’s value em-
pirically until the equivalent circuit’s |S,;|,,.« agreed with
the experimental value. The values for all components of
Fig. 8 are given in Table 1.

Because the values of minimum insertion 10ss [Sy]max
were forced to agree in order to determine R, the predic-
tive power of the theory cannot be judged by comparing
[Ssilmax Of the equivalent circuits and the experiments.
Instead, comparing the experimental values of Q, to those
obtained from the frequency responses calculated for the
equivalent circuits will reveal how accurately the model
simulates the experiments.

This comparison is shown in Table II. In each case the
TEM,,, mode was excited. For the configuration chosen,
the electric coupling of case (a) was fairly loose, resulting
in a relatively high minimum loss of 3.8 dB. However, this
light loading led to a relatively high loaded Q, value of
3000. The inductive stubs of case (b) improved the imped-
ance match to the 50 ohm measurement system and lowered
the minimum loss to only 1.3 dB. The corresponding
loaded Q, fell to a still respectable value of 1200. The
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TABLE 1
EQUIVALENT CIRCUIT VALUES
Case Cr Gy Ly L [ [ N Ry
(a) Electric 11.6 fF 12.5554 21.1719 =5} 2.46 0 13.675 6,600
coupling pF pH mum ohms
(b) Electric
coupling 11.6 fF 12.530 20,1857 0.637 2.46 2.28 13.096 13,300
w/matching pF pH nH mm mm ohms
(c) Electro-
magnetic 11.6 {F 8.28693 30.4767 5] 5.88 5.00 8.817 11,800
coupling pF pH mm mm ohms
TABLE II

EXPERIMENTAL DATA

Case D Resonant | Measured® [Sy1lmas | Messured | Equivalent Circuit,
(cm) | Frequency (dB + 0.4 dB) Q¢ @t
_(cHj)
(a) Electric 4.95 9.751 3.8 3000 1780

coupling

(b) Electric coupling | 4.79 10.006 13 1200 1470
w, hi:
(c] Electromagnetic | 4.79

coupling

10.00 0.8 860 540

greatest amount of coupling was obtained in case (c), in
which the electric fringing-field coupling combined with
magnetic coupling to give a minimum loss of only 0.8 dB,
with an accompanying Q, of 860. Although higher Q,
values can be obtained at 10 GHz with dielectric reso-
nators, the virtue of these cases lies in the fact that scaling
an open resonator system upward in frequency makes it
more convenient, not less. Also, diffraction-limited Q val-
ues should remain approximately constant with scaling, so
that the same circuit scaled to the millimeter wave range
will show a Q that is degraded only by the higher skin-
effect losses at those frequencies.

Comparing the experimental values for @, with the
theoretical equivalent circuit values, the models for (a)
electric and (c) electromagnetic coupling predict a Q, about
40 percent lower than those found experimentally. The
case (b) of electric coupling with matching was about 20
percent higher. We have somewhat artificially separated
the coupling into a purely magnetic part along the micro-
strip and a purely electric part at the open ends, whereas
the actual situation is considerably different. Both the
electric and magnetic fields couple energy all along the
microstrip, and the true electric field in particular is quite
different than it is in the dielectric-only case which we
have used in the theory. Nevertheless, trends are predicted
well, and the rather elementary theory we have presented
can serve as a guide for future theoretical and experimen-
tal work in this area.

IV. CoNcLUSIONS

The application of open-resonator coupling techniques
to millimeter wave circuit design has the potential for
improving any circuit in which a high Q element is needed.
Filter design is an obvious use, since the circuit we studied
is essentially a one-pole bandpass filter. Even if the cavity
Q is limited by ohmic losses, the Q, of a 100 GHz cavity
formed with a 1.56 cm spherical reflector can be expected
to reach about 7800, which is quite attractive when ob-
tained from a resonator not much larger than typical
waveguide components at these frequencies. A two-pole
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filter could be achieved in one resonator structure by
utilizing orthogonally polarized TEM modes.

In a related experiment [13] the authors have demon- .

strated that a single microstrip couples to an open reso-
nator mode in a manner similar to a dielectric resonator,
and so can be used for reflection stabilization of oscillators
[14], in which a combined output power of 13.3 mW was
obtained from two X band microstrip Gunn oscillators
whose individual power outputs obtained through purely
planar techniques never exceeded 3 mW each. The demon-
stration of such improvements indicates that the open
resonator has a promising future as an adjunct to conven-
tional millimeter wave planar circuits.
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