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Microstrip Circuit Applications of High-Q
Open Microwave Resonators

KARL D. STEPHAN, MEMBER, IEEE, SONG-LIN YOUNG, AND SAI-CHU WONG

Abstract —The problem of achieving a high circuit Q in hybrid and

monolithic microwave integrated circuits becomes acute in the millimeter-

wave range. An open microwave resonator can be formed above a planar

microstrip substrate by suspendkg a spherical reflector above it. We

develop a theory to account for the coupling between an open resonator

mode and a microstrip line. The open resonator is shown to have useful

circuit properties similar to a dielectric resonator, but with the potential of

efficient operation well into the millimeter wave range. Experimental

confhrnation of the theory is demonstrated by a scale model of a micro-

strip-based single-pole bandpass filter, which shows a loaded Q of 860 and

a minimum loss of 0.8 dB + 0.4 dB at 10 GHz.

I. INTRODUCTION

H YBRID AND MONOLITHIC microwave integrated

circuits (MIC’S) can now perform nearly all micro-

wave circuit functions that were formerly realized with

classical waveguide or coaxial designs. However, applica-

tions requiring a circuit element Q greater than about 300

have resisted efforts at integration because of the intrinsic

limitations of planar transmission-line media [1]. Although

the use of dielectric resonators can alleviate this problem,

at millimeter wavelengths these devices become very small

and difficult to mount repeatably. Thus, narrow per-

centage bandwidth filters, high-power combiners, and other

components that are intolerant of circuit losses have not

been possible up to now in MIC design. Even conventional

waveguide–cavity resonators show degraded performance

above’ 30 GHz, leaving the millimeter wave circuit designer

with very few options for achieving high Q circuit func-

tions.

By utilizing the free space above a microstrip circuit for

energy storage, we have found that circuit Q‘s above the

generally accepted limits for microstrip elements can be

achieved in a quasiplanar configuration. We form an open

resonator by suspending a spherical reflector above a

microstrip line. Such an open cavity supports fewer modes

than a conventional closed cavity of similar dimensions.

(In a practical circuit enclosure the resonator periphery

can be lined with absorbing material.) The modes sus-

tained within the resonator typically have unloaded Q

values on the order of 105 for reasonable cavity dimen-
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sions. When a microstrip line is coupled to such an open

resonator mode, the energy stored in the resonator volume

becomes accessible to the microstrip circuit, resulting in

loaded Q‘s of several hundred to several thousand. In this

paper, we develop a theory which leads to simple lumped

equivalent circuits for the coupling mechanisms between

the open resonator and microstrip. Experiments are pre-

sented and compared with the predictions of the theory.

Finally, some applications of this technique are discussed,

including filters, oscillators, and power combiners.

II. THEOIRY

A. Empty Resonator

Since the empty open resonator consisting of one flat

and one concave spherical mirror is the same type of

modified Fabry–Perot structure used in many lasers, it has

been studied extensively by numerous authors [2], [3].

Mink [4] analyzed the fields inside such a quasi-optical

resonator in connection with power combining of solid

state millimeter wave sources. At millimeter wavelengths,

the geometric–optics assumption that the wavelength is

negligibly small compared to the cavity dimensions is no

longer valid and diffraction effects become increasingly

significant. Cullen [5] has summarized the best current

theoretical models for fields insicle a millimeter wave open

resonator of practical dimensions. For the purposes of our

analysis a scalar-field approach gives satisfactory preci-

sion, and it is this approach as presented by Cullen that we

will now review.
Fig. 1 illustrates an open resonator formed when a flat

reflector at z = O faces a spherical concave reflector of

radius R ~ at z = D. The solution of interest results from

equating the scalar-field variable to the y-directed mag-

netic field, assuming that the radial-field dependence is

much slower than the variation along the resonator z axis,

and solving the resulting scalar Helmholtz equation. The

result is in terms of the y-directed magnetic field:

HY = HO—~~z) cos[kz– @(z)+ kp2/’2R(z)]

.exp [– p2/w2(z)]. (1)

In addition to the free-space wavenumber k = 2zT/A and

~~, the specialradial distance from the axis p = x + y
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Fig. 1. Empty open-cavity microwave resonator.

functions

@(z) = arctan (z/zO) (2)

R(z) =z(l+z:/z2) (3)

W2(Z) = ~(l+z2/z:) (4)
T

are defined in terms of a characteristic length ZOwhich will

shortly be determined from the boundary conditions. The

field described by (1) is a standing wave, approximately

plane near the flat reflector, whose amplitude shows a

Gaussian dependence on radius p. Thus it is termed a

Gaussian beam. At z = O the radius, measured from the

resonator axis, at which the amplitude falls to 1/e of its

on-axis value is termed the beam radius or scale radius WO,

which is related to the characteristic length ZO by

Azo
~:. —

z’”
(5)

The electric field coexisting with the magnetic field of (1)

is

[11’2 W()
~x=–jjyo !5 ~sin[kz –@(z) +kp2/2R(z)]

co

-exp [– p2/w2(z)] (6)

where p. and e~ are the permeability and permittivity of

vacuum, respectively.

To determine Z. we require tangential E to vanish on

the surface of the spherical reflector, which intersects the z

axis at z = D. Near the z axis Et,n = Ex and, recognizing

that R(z) is the radius of curvature of the phase front, we

use (3) to find that

zO=~D(RO-”~) . (7)

The boundary conditions will be satisfied only for certain

values of k = K~ corresponding to the TEMOO~ modes of

Flat
Reflector

@

E=EO

E2,H2

To Spherical
Reflector at z ❑ D

Z.o Z❑h

Fig. 2. Fields near a flat reflector which supports a dielectric substrate

of tluckness h.

the empty resonator. It can be shown that

~ _ (q+l)7r +arctan [f~]

q— D
(8)

This completes the analysis of the empty resonator.

B. Resonator with Dielectric Substrate

Suppose that the flat reflector now supports an electri-

cally thin dielectric substrate as shown in Fig. 2. To be

suitable for microstrip service the substrate height h must

be no thicker than approximately

1A
h =——maz

10 g
(9)

where Cr is the dielectric constant of the substrate relative

to vacuum and X is the free-space wavelength. This limita-

tion permits considerable simplification of the analysis. At

the surface of this thin dielectric, the fields are essentially

plane waves with a Gaussian dependence on radius. This

assumption allows the replacement of the dielectric slab of

thickness h with an electrically equivalent empty space of

thickness t,given by

1 [1tan(kh~)
t= — arctan

k 6“

(lo)

In order to keep a similar form for the fields near the

ground plane for the empty resonator case and the reso-

nator with dielectric, we make the substitution z‘ =

z + ( t – h) into (1) and (6) to find the fields within the

dielectric of region 1, bearing in mind that the relative

permittivity of the dielectric is c,. Matching boundary
conditions ( Ex, = Ex, and H,l = Hv, at z = h ) yields ex-

pressions for the fields E.+ and HY2-in region 2. With the

added condition that the b;am radius WOequals or exceeds

A, it can be shown that the following expressions agree

with the more exact analysis of Cullen [5] to within 2° of

the harmonic function arguments and one percent of the

true beam radius:

Region 1 (O < z < h):

Hvl = HOCOS(kdz) exp ( – pz/w~ ) (11)

[1

HO p. 1/2
Exl. _j— —

A ‘0

sin(k~z)exp ( – p2/w~). (12)
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To x=-m an infinite sum of the various orthogonal cavity-mode

fields. Since the TEMOO~ modes have very high Q values,

only one mode is excited significantly near a given reso-

nant frequency, and the terms in the expansion corre-

sponding to the other modes are comparatively small. An

analysis that approximates the total field by a single term

(~> Y3 , h)

b

in the expansion will accurately model the coupling medi-
G

ated by the mode corresponding to that term near its
.i A

~+
resonant frequency, and this is. the path we will pursue.

‘;’>s.l.ti.,~
Spherical reflector

Using a single term in the expansion, _we obtain this

axia expression for the cavity’s magnet ic field H [7]:
— z

Fig. 3. Microstrip lines on dielectric substrate inside open resonator.
in which ~. is the mode’s complex resonant frequency. The

Region 2 (h < z < D):
mode field ~0 must be normalized so that integration over

the cavity volume V yields

w, cos(k~h)
HY2 = Ho— Cos[kz’– @(z’)+ kp2/2R(z’)]

W(z’) Cos(kt)

.exp [– p2/w2(z’)] (13)

[1
–jlio p, l/z w, ‘sin (k~h)

EX2=- — —
6 ‘0 w(z’) sin(kl)

.sin[kz’– @(z’)+ kp2\2R(z’)] exp [– p2/w2(z’)]

(14)

where k~ = k~ is the wavenumber in the dielectric and

the substrate permeability P. is assumed to be that of

vacuum. The expressions for the characteristic length ZO

and resonant wavenumber Kg must now be modified to

z~=@+t-h)( RO+D+t-h) (15)

and

PO’
/f/

FOE,* d’r =1. (18)
v

Imposing this normalization condition leads to a value for

Ho in (1) of Ho= (2/ WO)(77GPO)-1’2, in which G is a

length related to the inter-reflectcm distance D by

cos2(k~h)
G=

[

sin (2 kt) 1 sin(2k#)
D–h–>— +h+

COS2 (kt) k~ “

(19)

For the equivalent magnetic current of Fig. 3, the integral

tion of (17) yields a relation between the cavity field H

and the voltage V3:

l?= ii, (“1~ [sHocos(k,h)exp(- p~/wj)] 0, (20)
02 — u,

(q +l)ti +arctan[~(D + t - h)/(Ro - D - t,+ h) ] in which p:= X; + y$ and ,s is the microstrip width. In
/_

Kq —
D+t–h “ this expression the value of the magnetic field over the

(16) relatively small magnetic current area has been approxi-

Since the substrate is near an electric field minimum, these
mated as a constant equal to its value at (X3, Y3, h).

We next assume that the presence of the infinite micro-
corrected values for characteristic length and resonant strip line leaves the magnetic field of (20) undisturbed to
wavenumber are usually Within one percent or less of the first order. Since the electrically thin substrate places the

corresponding unprimed empty resonator figures, which microstrip near the electric-field null at z = O, this assump-
may consequently be used without serious error. tion is reasonable. Considering the contour A in Fig. 3 as\
C. Resonator with Magnetic Current Source and being centered beneath the infinite microstrip, Faraday’s

Microstrip Line law gives

In Fig. 3 we show two microstrip lines on the surface of

4
~. d~= – jqao

I.IJ
fi. dii.

the dielectric substrate of subsection 13.The microstrip line
(21)

A ‘A
in the upper part of the figure extends from x = – b to
x = + ~ along its axis y = y,. The second microstrip line Since the top and bottom segments of A lie on conductors,

te~minates in an open circuit at (--q – h/2, .Y3, h) where only the vertical segments along E, contribute to the

an ac voltage USis maintained at the open end with respect left-hand side of (21), which can be expressed in terms of a

to the ground plane. Following Derneryd [6], we replace differential induced voltage:

the second microstrip by a magnetic current element of

magnitude MY = V3/h, oriented as shown. 8(x) =h[E,(x+dx)-EZ(x)] = -$~”d~ (22)

This magnetic current excites fields in the open cavity

resonator which cw be expressed exactly, in principle,. as When this term is added to the telegrapher’s equation for



132’2 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQLJES, VOL 36. NO. 9, SEPTEMBER 1988

voltage and current along a transmission line having in-

ductance L and capacitance C per unit length, we obtain

this differential equation for the microstrip line voltage

v(x):

o-(x,) -— U+(xl) ~ -(X2) -- rJ +(X2)
---- . . . . .

0 0

+ +
7)(X1) v (X2)

~
(a)

1
— ——

~ 2U

-[–1

d 8(x)

dx2–dx dx ‘–
#L Cu. (23)

+74(X2)

Z.
Port 2

z.z~ Z.

The induced voltage derivative 8(x )/d.x can be found by

substituting (20) into (21) and using (22) to find that

u, (x,)+

8(X)
— = uq$’(u)exp(– x2/u~)

dx
(24)

L _L-— ——
(b)

—

.T*’T+
in which the function of frequency F(u) is defined as

bm’-l
I 3 I

v,+

Z.

—= —

.exp ( – y~/w#) exp (– p~/w~). (25)

A solution of (23), with the exponential ftinction of x in

(24) substituted for 8(x ), can be found by Fourier-trans-

form methods [8]. The inhomogeneous solution induced by

the driving voltage U3 is found to be
x=x, X=xe X=X2

J-U3FW0 T
u(x) = ~ .e-’’/”~

(c)

Fig. 4, (a) Infimte microstrip hne reduced to (b) fimte line with matched

terminations at ports 1 (x = xl) and ‘2 (x= Xz ), and (c) equivalent
circuit showing line broken at x = .x,, and fed by port O of two-port,.{exp{(j~W)(wo/2)-x/wo}2

~{1-erf [( ju~)(wo/2)- x/wO] } tion in Fig. 4(b) is simply u + (xl) times the phase factor
e ‘Jk,Ix~ – ‘I), leading to this expression for the net vohage

U2(X2) of the finite line:
–exp {( jom)( wO/2) + x/tiO}2

. {1-erf [( jw=)(wo/2)+x/~~] }). (26)
[’,(%) = U+(x’)- u+(xJe-J~e(x2-xl). (29)

The product u~ = k, is simply the propagation con-

stant of the microstrip line, and k, = k&, where e, is the

effective relative dielectric constant of the microstrip line.

Making this substitution, we find that (26) can be ex-

pressed as the sum of a forward-traveling voltage wave

u+(x) and a reverse-traveling wave v-(x), so that v(x) =

U+(x)+ u–(x) where

A similar argument gives

LIl(Xl) = U–(xl)– u- (x2)e–Jke(x~–xl). (30)

When these differences are evaluated the error function

integrations in the complex plane cancel over most of their

extent, leaving

(31)
u+(x)= ‘3F~6[1 -erf (jk,~O/2- X/WO)]

(1

k~w;
.exp –— ~‘1%X

4
(27)

and

—V3F

‘l(X1) = ~(1~ – j]l)e+J~,.’l
e

(32)

u-(x) = – ‘3~fi [1 -erf ( jk,wO/2- x/we)] in which the integrals 1~ and II are defined in terms of

normalized coordinates UI = kexl, U2 = k=x2 and a nor-

malized beam radius yO= k= wo:
(28)

~~=/u’cos(~)e-u2/”d~ (33)
U1Suppose the infinite microstrip is now terminated in

matched loads at port 1 (x = xl) and port 2 (x = X2), as

shown in Fig. 4. The voltage V2 at port 2 results from the

forward-traveling wave arriving at x2, which is different

from the voltage u+ (X2) of the infinite line because of the

missing contribution from the omitted part of the line

extending from x = – co to x = x,. This missing contribu-

I,=~u’sin(u)e-L’2/’’du- (34)
%

To complete the analysis we must determine the Q

value of the resonant mode which determines the

com~lex-valued resonant freauencv u. in terms of 0 and. .J” -



STEPHAN et d.: HIGH-Q OPENMICROWAVERESONATORS 1323

(35)

The value of Q, assuming no wall or diffraction losses for

the moment, can be found by taking the ratio of stored

energy U to energy dissipated in the microstrip loads per

cycle _at resonance. This is most easily done by letting

H = HO, since our choice of normalization then gives a

numerical value for U of ~. Using the expressions

for Ul(xl) and U2(.X2) to find total average power P~ =

(1U112+ IU21‘)/2Z0, we obtain after some algebra:

Substitution of this Q value into (35) now completes the

expression for F(u) and determines U1 arid U2 in relation

to the driving voltage r+.

D. Resonator Equivalent Circuit

Let us now derive an equivalent circuit for the case

illustrated in Fig. 3. Examination of the form of the

voltages UI and U2 in (31) and (32) shows that they are

equal in magnitude and differ in phase by a factor related

to position. This suggests an equivalent circuit of the form

shown in Fig. 4(c), in which both UI and U2 arise from a

voltage U. at port O of a hypothetical two-port. The new

voltage U. is related to U1 and U2 by

– 00
U1 = _._e-Jk.(xe-xl)

2
(37)

+ u“
U* = _ e–J%k – .x,)

2
(38)

and if we define the location of the equivalent port to be

x,, we find that

‘e=t[arctan(t)+mnl‘3’)
where n is an integer chosen such that xl < x, < X2. The

expression for U. that gives the desired forms of U1 and Uz

is now

(1:+ I:)’’’F(u) u,= ho3u3
u“ =

ke
(40)

in which we have introduced the dimensionless hybrid

parameter h “q. Since the load viewed from port O is simply

2 ZO, the problem of simulating a three-port circuit

terminated in Z. at ports 1 and 2 has been reduced to the

problem of simulating a two-port circuit with a load 2Z0

at port O.
Since by assumption the resonator is lossless, its two-port

admittance matrix is composed of four purely imaginary

elements. By reciprocity, two of these elements are equal

(Yoq = Yqo), so there are only three independent variables
to be determined: YOO,Y03= Yjo, and Y~3. The behavior of

these parameters near resonance can be found by conserv-

ing complex power. Let 9 be the complex power entering

port 3. Then if P~ is the (real) power dissipated at the load

2 Z. on port O, and WM and W, denote the average stored

magnetic- and electric-field energies respectively, complex

power is [9]

IU312Y:
!Y’Pd+j2@(wm-we)=y (41)

where Yin is the input admittance at port 3 when port O is

terminated in 2 Zo. Near the resonant frequency o = u,,

the real part G,. of Yin will be stationary with respect to

frequency and Yin can be approximated by

(42)

where Y,n = Gin + jl?ln and Au ❑= u – or. At resonance

(Ati = O), the complex power @ becomes purely real and

must equal the power P~ dissipated in port O’s load.

Relating U. to Vg via (40) for o = a. gives

~, = ~ Qs2cos2(k~h) exp(–2p~/w~)
m “ . (43)

T Urp “GWO*

The value of dBin/ilti can be found by differentiating

(41) with respect to w and reco~nizing that Wn = W, at

resonance. This gives

4U, a
— ~+we)=~. (44)

The frequency dependence of the stored-energy terms

comes from the mode expansion of the fields, which results
in these expressions for W~ and We in terms of Q, P~, tio,

and u,:

(45)

2
joo Pd (J,

we= — — (46)
U* — 6J;

i )“
Q+*

At o = co,, W. is stationary and (’45) substituted into (44)

gives

aB,n 2Q
— = – —-G,..
au q.

(47)

Now that Y,. and h “q have been found, all that remains is

to devise an equivalent circuit ‘v~hose Y,. and h”~ equal

those of the physical system when both are loaded by 2 ZO

at port O. It is a straightforward matter to show that if the

three real quantities G,., B,., and Ihoql correspond, then so

must the imaginary values YOO, Y03, and Y3~. Hence the

circuit devised will be truly equivalent in the neighborhood

of resonance.

Consider the lumped-element equivalent circuit in Fig. 5

which we choose to model the two-port block in Fig. 4(c).

Suppose the series capacitance CF is much smaller than
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CO. Far from resonance, the admittance at port 3 will

approach joCF. Since this behavior is shown by the open-

circuit microstrip of Fig. 3, we choose to set CF equal to

this fringing capacitance. Derneryd [6] gives an approxi-

mate expression for CF in terms of h, s, c,, and line

impedance 2.:

0.412h{G Ce+0.3
CF =

20 “ 6,
“h ‘0”262 . (48)

–0.258 “ s/h +0.813

For practical microstrips C~ is typically less than 0.1 pF.

We will now show how CO, LO and N can be selected so

as to model the behavior of the open resonator-microstrip

circuit in the neighborhood of resonance. First we require

that the input admittance Ye = G,+ jlle is real at the

resonant frequency q.. Let R = 2N2Z0 be the resistance
across the tank circuit reflected through the ideal trans-

former. If Y, is real at q = u,, then’- LO and CO must
satisfy

(*)2-[
— U;Lo(co+ CF)–l] [1– U,?l,oco:

At resonance, it can be shown that

(2 1: (U;,)21)-’=G

Re(Ye)= ~+ —+

. (49)

. (50)

Setting Re ( Y,) = G,n determines R and thus N, since 20 is
fixed. This insures the equivalence of h 03 and G,.. The

expression for dB,/d w is quite complicated, but for Q. =

oLo/R greater than 100, this approximation is correct to

within 0.2 percent:

dB, – 2C;R2 i3B1n
—— ._

da = LO au “ (51)

Eq. (51) determines Lo, which can be used in (49) to find

CO exactly. Thus all three parameters of the equivalent

circuit N, LO, and CO have been found in terms of the

open resonator parameters. When the values for G,. and

dB,~/dti found from the open resonator are used in (50)

and (51), we obtain these explicit expressions for the

equivalent circuit component values:

([11 1)
1/2

Gin
N= —

220 ~ + (tirc,y
(52)

4C;N4Z3J,
Lo=

QG,n
(53)

Co=cF[ti,-2(LocF -L;/R2) -1-1]. (54)

III. EXPERIMENTS

A. Applicability of the Theory

It is optimistic to expect the simplified analytical expres-

sions derived above to model exactly the very complex

microstrip open resonator system. Our theory is incom-

plete in that we have not attempted to solve Maxwell’s

.————————.—-__ -——_______ ~
I I

.i
~31

‘e- ~@’@”o

I Port 3 Port o I
L ________________ j

Fig. 5. Equivalent cmcuit for two-port block of Fig. 4(c).

equations self-consistently. Instead, we began with a solu-

tion for the more tractable case of a bare dielectric slab in

an open resonator, and assumed these fields were undis-

turbed by the insertion of microstrip lines. Up to now we

have also neglected all mechanisms of energy loss other

than the power coupled out of the resonator by the micro-

strip lines. In the following section we will show how the

equivalent circuit of Fig. 5 may be modified by adding an

empirically derived resistor R ~ to model diffraction and

ohmic losses. The microstrip lines also perturb the reso-

nant frequency u, away from the value predicted from the

bare-slab analysis, so in the following analyses u, is de-

termined by experiment. With these empirical corrections

we will show that the theory predicts experimental Q

values to within a factor of two or better. More sophisti-

cated analyses will no doubt improve this accuracy, but the

goal of achieving a semiquantitative understanding of the

coupling between microstrip lines and an open resonator

has been achieved.

B. Diffraction and Ohmlc Lo~~e~

Diffraction losses per se in an empty open resonator

can be very low, as Beyer and Schiebe showed in their

experimental study of open resonators at 9 GHz [10].

However, when any metallic object such as a microstrip

line is placed within the open resonator fields, induced

currents on the object radiate power out of the resonator.

This extrinsic diffraction loss or scattering loss was studied

experimentally by constructing an open resonator along

the lines of Figs. 1 and 2. In all the experiments to be

described, we used a polished, gold-plated, aluminum

spherical reflector whose radius of curvature R = 156.2 mm

was equal to its usable diameter. The flat reflector was a

brass plate approximately 15 cm square mounted on a
motor-driven translation stage so that the inter-reflector

distance D could be adjusted with a resolution of 2.5 pm.
The coaxial-loop coupling method of Beyer and Schiebe

[10] was used to measure the unloaded quality factor QO.

To investigate the scattering effects of microstrip lines

on the QO of an open resonator mode, we first tracked the

QO of the TEM 003 mode of the empty resonator as a
function of D to establish a baseline. This baseline value is

established by a combination of diffraction losses and

ohmic losses. The latter can be predicted from theory [11]

and for this resonator the Q. calculated from ohmic losses

alone is D/( S,, + S~), in which the skin depths for brass
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Q.

350001 -.. (a) ------ Theoretical(ohmiclossonly)
. . . . (b) _ Experimental(empty resonator)

‘S. ..k
----- (c) ---- Experimental (with microstrip lines)

-. -.. .

30000- -----
“------

-------
------- ------- .

25000
1

■

20000.

15000.
c+,

10000

~ d

.
,U .

\*\\
5000 . +,

‘},\ /

A-

OJ
Is,’

7 8 9 10 11 12 13 14

Frequency (GHz)

Fig. 6. Unloaded Q of TEMW3 mode versus frequency as inter-reflec-

tor distance D is varied. (a) Theoretical maximum QO including ohmic
loss only. (b) Measured QO of empty resonator. (c) Measured QO of
resonator with substrate and microstrip lines.

(S’,) and gold (S,) are found using conductivities of 1.57.

107 S/A4 and 4.1.107 S/&f respectively.

In Fig. 6 the experimental values for QO are plotted for

the TEMW3 mode as a function of resonant frequency, The

parameter D was varied from 46.5 mm to 84.6 mm to

obtain the frequency range illustrated. Above 10 GHz, the

measured data for the empty resonator follow the shape of

the theoretical ohmic-loss limit, although differing from it

by a constant scale factor probably caused by surface

roughness, which increases the ohmic loss above its theo-

retical value. Below 10 GHz, the experimental empty reso-

nator QO falls rapidly because of diffraction from the edge

of the spherical reflector, where the beam intensity is only

11.6 dB below its on-axis value at 9 GHz.

A dielectric substrate with two microstrip lines having

the dimensions shown in Fig. 7 (A = 14.6 mm) was mounted

on the flat reflector, with due precautions taken to insure

the flatness of the ground plane. The width of the micro-

strips was chosen so that their characteristic impedance

was 50 ohms. The measurements of Q. versus distance

were then repeated. Above 11 GHz, the quality factor fell

from about 20,000 to about 13,500 but showed no strong

frequency dependence. This decrease can be attributed to a

combination of dielectric substrate losses (expected to be

comparatively small in this case) and nonresonant scatter-

ing from the microstrip lines. Near 9.8 GHz the open-ended

lines are a half-wave long electrically, so their resonant

scattering cross-section increases greatly above its nonreso-

nant value. This effect is demonstrated by the sharp drop

in Q. for this case, with a minimum value below measura-

ble limits at about 9.6 GHz. A modified version of this

experiment has been used to measure the scattering cross-

section of symmetrical objects such as wires [12]. When the
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?elativepermittivity = 2.20
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Fig. 7. Dimensions of dielectric substrate and microstrip lines mounted

on flat reflector of open resonator (distance A given in text).

microstrips are terminated in a resistive load, as in the next

section’s experiments, they cease to be resonant lines, and

scattering decreases so that reasonably high Q values are

once again obtainable.

C. Open-Resonator-Coupled Micro,strip Lines

In these experiments the same configuration of micro-

strip lines as in Fig. 7 was used. TWO 0.9 mm O.D. 50 ohm

coaxial cables were brought through the flat reflector to

ports 1 and 4 of the microstrip lines. The cable’s shield was

soldered to the back of the microstrip ground plane and its

center conductor extended through a small hole in the

substrate to join the end of thlt microstrip line. Since

the coaxial line loss of about 2 dB was not a part of the

intrinsic loss of the system, it has lbeen subtracted from the

raw experimental loss data. Reflections from the imperfect

coaxial-microstrip transitions limited the accuracy of the

transmission loss measurements to about +0.4 dB.

Three physical configurations of the microstrip lines

were examined. In the first configuration, the spacing A

was 26.9 mm, which meant that lhe lines were electrically

short and coupling was mediated primarily by the fringing

electric field at the open-circuited ports 2 and 3. We will

denote this case (a) as electric coupling, although some

voltage was induced by the magnetic field in the short

microstrip sections and both effects were included in the

equivalent circuit model. The second configuration was

obtained from the first by” adding symmetrically placed

short-circuited stubs at ports 1 and 4. This had the effect

of placing shunt inductances (calculated total value L =

0.637 nH) across these ports, which tuned out some of the

capacitive susceptance shown by these electrically short
lines. This second case (b) we term electric coupling with

matching. Finally, the inductive stubs were removed and a

circuit having a distance of A = 14.6 mm was studied. The
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Fig. 8. General equivalent circuit for microstrip lines coupled via open

resonator mode.

longer microstrip lines of this third case coupled substan-

tially to both the electric and the magnetic fields, so we

refer to this case (c) as electromagnetic coupling.

Equivalent circuit models for these cases were obtained

by extending the conceptual three-port circuit of Figs. 4(c)

and 5 in a straightforward manner. Empirically determined

values for unloaded resonator QO due solely to scattering

and ohmic losses were modeled by inserting a resistor of

value R o = U,LOQO into the equivalent circuit of Fig. 5.

The resulting equivalent circuit for all three cases is shown

in Fig. 8. All component values with the exception of CO

and R ~ were calculated from first principles using the

theory of Section II. The transmission loss in a 50 ohm

system from port 1 to port 4 was then measured for all

three cases. A typical response showed a peak in IS411at

the mode’s resonant frequency co, with a maximum value

IS411ma and a 3 dB radian frequency bandwidth Au from
which an experimental value for the loaded quality factor

Qi = 0,/AcJJwasobtained.
In order to compare the experiments with theory, the

remaining component values CO and R ~ must be estab-

lished. Taking the frequency at which IS411mm occurs to be

the experimental resonant frequency, we used this value of

~r in (54) to find Co. Since no independent measurements

of Q. were made, we chose to adjust R ~’s value em-

pirically until the equivalent circuit’s I,S41]~= agreed with

the experimental value. The values for all components of

Fig. 8 are given in Table I.

Because the values of minimum insertion loss IS411~a

were forced to agree in order to determine R ~, the predic-

tive power of the theory cannot be judged by comparing

Iflqll ~aX of the equivalent circuits and the experiments.

Instead, comparing the experimental values of Q, to those

obtained from the frequency responses calculated for the

equivalent circuits will reveal how accurately the model

simulates the experiments.

This comparison is shown in Table II. In each case the

TEMOOZ mode was excited. For the configuration chosen,
the electric coupling of case (a) was fairly loose, resulting

in a relatively high minimum loss of 3.8 dB. However, this

light loading led to a relatively high loaded Qi value of

3000. The inductive stubs of case (b) improved the imped-

ance match to the 50 ohm measurement system and lowered

the minimum loss to only 1.3 dB. The corresponding

loaded Ql fell to a still respectable value of 1200. The

TABLE I
EQUIVALENT CIRCUIT VALUES

TABLE II

EXPERIMENTAL DATA

greatest amount of coupling was obtained in case (c), in

which the electric fringing-field coupling combined with

magnetic coupling to give a minimum loss of only 0.8 dB,

with an accompanying Q, of 860. Although higher Q1

values can be obtained at 10 GHz with dielectric reso-

nators, the virtue of these cases lies in the fact that scaling

an open resonator system upward in frequency makes it

more convenient, not less. Also, diffraction-limited Q val-

ues should remain approximately constant with stalling, so

that the same circuit scaled to the millimeter wave range

will show a Q that is degraded only by the higher skin-

effect losses at those frequencies.

Comparing the experimental values for Ql with the

theoretical equivalent circuit values, the models for (a)

electric and (c) electromagnetic coupling predict a QI about

40 percent lower than those found experimentally. The

case (b) of electric coupling with matching was about 20

percent higher. We have somewhat artificially separated

the coupling into a purely magnetic part along the rnicro-

strip and a purely electric part at the open ends, whereas

the actual situation is considerably different. Both the

electric and magnetic fields couple energy all along the

microstrip, and the true electric field in particular is quite

different than it is in the dielectric-only case which we

have used in the theory. Nevertheless, trends are predicted

well, and the rather elementary theory we have presented

can serve as a guide for future theoretical and experimen-

tal work in this area.

IV. CONCLUSIONS

The application of open-resonator coupling techniques

to millimeter wave circuit design has the potential for

improving any circuit in which a high Q element is needed.

Filter design is an obvious use, since the circuit we studied

is essentially a one-pole bandpass filter. Even if the cavity

Q is limited by ohmic losses, the Q. of a 100 GHz cavity

formed with a 1.56 cm spherical reflector can be expected

to reach about 7800, which is quite attractive when ob-

tained from a resonator not much larger than I.ypical

waveguide components at these frequencies. A two-pole
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filter could be achieved in one resonator structure by

utilizing orthogonally polarized TEM modes.

In a related experiment [13] the authors have demon-

strated that a single microstrip couples to an open reso-

nator mode in a manner similar to a dielectric resonator,

and so can be used for reflection stabilization of oscillators

[14], in which a combined output power of 13.3 mW was

obtained from two X band microstrip Gunn oscillators

whose individual power outputs obtained through purely

planar techniques never exceeded 3 mW each. The demon-

stration of such improvements indicates that the open

resonator has a promising future as an adjunct to conven-

tional millimeter wave planar circuits.
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